Introduction
- Moss Inc. streptavidin-R-phycoerythrin (SAPE) conjugates excel in diagnostic, molecular and cellular fluorescence detection assays based on biotin labeling
- Moss SAPE conjugates are provided in liquid stable, ready to use form and are suitable for use in various Luminex assays, multiplexing platforms, and microarrays
- Moss SAPE conjugation technology produces conjugates that result in exceptional signal-to-noise ratios, high titers, and the conjugates can also be customized to maximize performance for specific platform applications

SAPE FRET Test Principle
- The FRET test is a homogeneous assay for testing PE conjugates
- SAPE serves as the fluorescence resonance energy transfer (FRET) donor conjugate in the test
- Biotinylated-allophycocyanin (BAPC) is the energy transfer acceptor conjugate
- Conjugates and reagents are mixed together in microtiter plate wells, and then the fluorescence intensity is measured after 15 minutes

Significance of FRET Results
- Bound SAPE donor fluorescence, F, is divided by the fluorescence of the donor alone, Fo
- No binding results in no energy transfer and F/Fo = 1.00
- A binding interaction between donor and acceptor results in fluorescence resonance energy transfer and F/Fo < 1.00
- The smaller the F/Fo value, the stronger the binding interaction

SAPE FRET Test Principle
- SAPE with 50% Glycerol and 15 mg/mL BSA
- 30 Months Refrigerator and Freezer Stability

Significance of FRET Results
- Moss Inc. SAPE gives greater signal intensity than a competitor in a Luminex TSH assay

SAPE Ambient Temperature Storage Stability of Various Dilutions in PECD Conjugate Stabilizing Diluent by FRET Quenching Assay

Moss Inc. SAPE Conjugates
- Excellent liquid stability provides a long shelflife
- Ready to use from the bottle
- Available in milligram to gram amounts
- Custom made conjugates – please inquire